Welcome, Hani Kushlaf, MD

Hani Kushlaf, MD has joined the Neuromuscular Disorders Program at the UC Neuroscience Institute. Dr Kushlaf is an associate professor of Neurology at the University of Cincinnati. He graduated from the University of Washington Medical School and completed his neurology training at the University of California San Francisco. Dr. Kushlaf completed his fellowship in Neuromuscular medicine at Washington University in St. Louis. His clinical and research interests include advanced neuromuscular medicine at Duke University. Dr Kushlaf, an Assistant Professor in the Department of Neurology at the University of Cincinnati Medical Center, will join the Huntington’s Disease Center and the UC Neuroscience Institute. He completed his neuromuscular fellowship at the UC Neuroscience Institute.

New UCNI Specialists on 66 UCNI Specialists on 66 ‘Best Doctors’ Lists

UCNI’s list of specialists affiliated with the UC Neuroscience Institute are included in the 2013 issue of Top Doctors in Greater Cincinnati. The magazine profiled the names of physicians at the University’s Brain Tumor Center, Stroke Center, Neuroscience Institute, and other UCNI services.

‘Best Doctors’ Lists

UCNI has been included in the Best Doctors lists for the following programs:

- Brain Tumor Center
- Comprehensive Stroke Center
- Epilepsy Center
- Gardner Family Center for Parkinson’s Disease
- Mood Disorders Center
- Neuromuscular Disorders Program
- Neurosurgery
- Neuropsychiatric Disorders Center
- Northwest Center
- Multiple Sclerosis Center
- Huntington’s Disease Center
- Autism Center

Continued on page 3

Recovery after stroke: It’s never too late to START

“Across the nation, more than 600,000 individuals experience a stroke each year. Many experience a second stroke and learn that early intervention is crucial. At UC Health’s Drake Center, we have five new stroke survivors who have come back from the brink and are now enjoying a life filled with hope.”

Dr. Kushlaf will work closely with the UC Health’s Mood Disorders Center and the UC Health’s Comprehensive Stroke Center to provide top-notch care for patients with depression and anxiety disorders. He will also provide care for patients with Parkinson’s disease and movement disorders. His clinical and research interests include advanced neuromuscular medicine at Duke University. Dr Kushlaf, an Assistant Professor in the Department of Neurology at the University of Cincinnati Medical Center, will join the Huntington’s Disease Center and the UC Neuroscience Institute. He completed his neuromuscular fellowship at the UC Neuroscience Institute.

UCNI’s list of specialists affiliated with the UC Neuroscience Institute are included in the 2013 issue of Top Doctors in Greater Cincinnati. The magazine profiled the names of physicians at the University’s Brain Tumor Center, Stroke Center, Neuroscience Institute, and other UCNI services.

Inside this issue

Mental illness interrupted

Treating glaucoma patients

Targeting brain: New therapies in development

Exploring links between stress and epilepsy

Brain cancer clinics

Walk, talk, bike and more

Recovery after paralysis: a wearable robot

brings patients to their feet

At age 18, Carolina Nathan of Hamilton, Ohio, was injured in a car accident on her way home from an Orange Bowl Game in Florida. In 2003, the mother of an 8-month-old baby, she was left paralyzed from the waist down. Like millions with spinal cord injuries, she used scrafts for mobility, but was still in a wheelchair. When she attended a University of Miami, she had never hoped in a robotic technology available.

The UC Health’s Drake Center. “During the last decade we have learned that more than 200 stroke survivors from 30 states have benefited from the Stroke patients. The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the Innovative technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The UC Health’s Drake Center. “During the last decade we have learned that the Stroke patients. The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

Dr. Kushlaf will work closely with the UC Health’s Mood Disorders Center and the UC Health’s Comprehensive Stroke Center to provide top-notch care for patients with depression and anxiety disorders. He will also provide care for patients with Parkinson’s disease and movement disorders. His clinical and research interests include advanced neuromuscular medicine at Duke University. Dr Kushlaf, an Assistant Professor in the Department of Neurology at the University of Cincinnati Medical Center, will join the Huntington’s Disease Center and the UC Neuroscience Institute. He completed his neuromuscular fellowship at the UC Neuroscience Institute.

Inside this issue

Mental illness interrupted

Treating glaucoma patients

Targeting brain: New therapies in development

Exploring links between stress and epilepsy

Brain cancer clinics

Walk, talk, bike and more

Recovery after paralysis: a wearable robot

brings patients to their feet

At age 18, Carolina Nathan of Hamilton, Ohio, was injured in a car accident on her way home from an Orange Bowl Game in Florida. In 2003, the mother of an 8-month-old baby, she was left paralyzed from the waist down. Like millions with spinal cord injuries, she used scrafts for mobility, but was still in a wheelchair. When she attended a University of Miami, she had never hoped in a robotic technology available.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

The wearable robotic device, developed by Ekso™ Bionics, enables a paralyzed individual to stand and walk again. Drake Center is the first in the region and one of only a few in the world to use the “Myoelectric” technology.

Dr. Kushlaf will work closely with the UC Health’s Mood Disorders Center and the UC Health’s Comprehensive Stroke Center to provide top-notch care for patients with depression and anxiety disorders. He will also provide care for patients with Parkinson’s disease and movement disorders. His clinical and research interests include advanced neuromuscular medicine at Duke University. Dr Kushlaf, an Assistant Professor in the Department of Neurology at the University of Cincinnati Medical Center, will join the Huntington’s Disease Center and the UC Neuroscience Institute. He completed his neuromuscular fellowship at the UC Neuroscience Institute.
UC joins new effort to treat head injury and posttraumatic stress

A partnership of researchers at the University of Cincinnati are exploring the role of the immune system, a combination of biological, environmental and genetic factors, in creating posttraumatic stress disorder (PTSD). They have developed a brain scan that allows them to know how severe it is.

Although not able to discuss the details, Dr. Driscoll hopes to pursue funding for clinical trials involving testing in a more human context. The coinvestigator would use the brain scan in place of the brain scan in animals. In the laboratory study, which is funded by a $50,000 grant from the Myeloma Education & Research Foundation, the coinvestigator, Dr. Driscoll and a team of researchers will explore the possibility of using the scan to identify those who might be at risk for developing a specific type of leukemia.

The results of the scan will not only help in identifying those who might benefit from early intervention, but can lead to biological insights that might yield new treatments for the disease.

The robot has wristed arms, which move in the same way your wrists move, but they’re holding smaller instruments, “The robot has wristed arms, which move in the same way your wrists move, but they’re holding smaller instruments, Dr. Wilson says. “You would never have had before.” The robot has wristed arms, which move in the same way your wrists move, but they’re holding smaller instruments, Dr. Wilson says. “You would never have had before.”

For more information about mindfulness studies at UC, please contact Emily Rummelhoff at emily.rummelhoff@uc.edu (513) 558-4219.

Recovery after stroke, mechanical thrombectomy

The library of UCMC, Dr. Driscoll’s lab at the UC Medical Center and the Groffer Laboratory for Cancer Treatment and Prevention is investigating the role of the immune system in the development of brain and lung cancer.

The team has developed a brain scan that allows them to know how severe it is.

Although not able to discuss the details, Dr. Driscoll hopes to pursue funding for clinical trials involving testing in a more human context. In the laboratory study, which is funded by a $50,000 grant from the Myeloma Education & Research Foundation, the coinvestigator, Dr. Driscoll and a team of researchers will explore the possibility of using the scan to identify those who might be at risk for developing a specific type of leukemia.

The results of the scan will not only help in identifying those who might benefit from early intervention, but can lead to biological insights that might yield new treatments for the disease.